Multi-Objective Optimization Algorithm to the Analyses of Diabetes Disease Diagnosis

نویسنده

  • M. Anusha
چکیده

There is huge amount of data available in health industry which is found difficult in handing, hence mining of data is necessary to innovate the hidden patterns and their relevant features. Recently, many researchers have devoted to the study of using data mining on disease diagnosis. Mining biomedical data is one of the predominant research area where evolutionary algorithms and clustering techniques are emphasized in diabetes disease diagnosis. Therefore, this research focuses on application of evolution clustering multiobjective optimization algorithm (ECMO) to analyze the data of patients suffering from diabetes disease. The main objective of this work is to maximize the prediction accuracy of cluster and computation efficiency along with minimum cost for data clustering. The experimental results prove that this application has attained maximum accuracy for dataset of Pima Indians Diabetes from UCI repository. In this way, by analyzing the three objectives, ECMO could achieve best Pareto fronts. Keywords—Clustering; Genetic Algorithm; Multi-objective Optimization; ECMO; Diabetes Disease

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction and Diagnosis of Diabetes Mellitus using a Water Wave Optimization Algorithm

Data mining is an appropriate way to discover information and hidden patterns in large amounts of data, where the hidden patterns cannot be easily discovered in normal ways. One of the most interesting applications of data mining is the discovery of diseases and disease patterns through investigating patients' records. Early diagnosis of diabetes can reduce the effects of this devastating disea...

متن کامل

Exergy , economy and pressure drop analyses for optimal design of recuperator used in microturbine

The optimal design of a plate-fin recuperator of a 200-kW microturbine was studied in this paper. The exergy efficiency, pressure drop and total cost were selected as the three important objective functions of the recuperator. Genetic Algorithm (GA) and Non-dominated Sorting Genetic Algorithm (NSGA-II) were respectively employed for single-objective and multi-objective optimizations. By opt...

متن کامل

A Decision Support System for Diagnosis of Diabetes and Hepatitis, based on the Combination of Particle Swarm Optimization and Firefly Algorithm

Introduction: Clinical Decision Support Systems (CDSS) are designed in the form of computer programs that help medical professionals make decisions about disease diagnosis. The main aim of these systems is to assist physicians in diagnosing diseases, in other words, a physician can interact with the system and use them to analyze patient data, diagnose diseases, and other medical activities. Me...

متن کامل

Exergetic, Exergoeconomic and Exergoenvironmental Multi-Objective Genetic Algorithm Optimization of Qeshm Power and Water Cogeneration Plant

In this study, optimization of Qeshm power and water desalting cogeneration plant has been investigated. The objective functions are related to maximizing exergetic efficiency and minimization of exergoeconomic and exergoenvironmental parameters. Also, the integration of RO desalination with the existing plant has been evaluated based on these analyses. This plant includes two MAPNA 25 MW gas t...

متن کامل

Multi-objective optimization of geometrical parameters for constrained groove pressing of aluminium sheet using a neural network and the genetic algorithm

One of sheet severe plastic deformation (SPD) operation, namely constrained groove pressing (CGP), is investigated here in order to specify the optimum values for geometrical variables of this process on pure aluminium sheets. With this regard, two different objective functions, i.e. the uniformity in the effective strain distribution and the necessary force per unit weight of the specimen, are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016